
1

SkyByte: Architecting an Efficient Memory-Semantic

CXL-based SSD with OS and Hardware Co-design

1

Haoyang Zhang*, Yuqi Xue*, Yirui Eric Zhou, Shaobo Li, Jian Huang

Systems Platform Research Group

*Co-primary authors.

Open Research Projects Results ReproducedResearch Objects Reviewed

Artifact Badges

The Growing Need for Memory Expansion in Data Centers

2 Systems Platform Research Group at UIUC

AI/ML

Database

HPC

Virtualization

Data Centers

Increasing Memory Demands DRAM Capacity Scales Slowly

Scaling of DRAM Capacity
Data depicted for the most common type of DDRx chip of each year. Reproduced from

Onur Mutlu et. al, “A Modern Primer on Processing-In-Memory”

Physical Scaling Limitations

High Manufacturing Cost

CXL-based SSDs: A Promising Way to Expand Memory Capacity

3 Systems Platform Research Group at UIUC

A variety of CXL-SSD prototypes

have been developed

CMM-H

CXL-Flash

Lower Cost

Cacheable and Byte-

addressable Access by CPU

Academic Research

Larger Capacity

CXL-based SSDs

Systems Platform Research Group at UIUC

System Architecture of CXL-based SSDs

App’s Virtual Memory Space

Host DRAM Memory Flash Memory

DRAM SSD

4

CXL.mem

CPU

Core Core Core

Cache Cache Cache

LLC

DDR

Directly access

via load/store instructions

Mapped as Part of

System’s Physical Memory

Physical Memory Space

ld/st

5 Systems Platform Research Group at UIUC

Internal Architecture of CXL-SSD

Flash Memory Chip Chip Chip Chip

DRAM Data

Cache

Page (4KB)

Granularity Access

CXL Interface (to host)

Cacheline (64B)

Granularity Access

Internal Bus

Flash

Controller

DRAM

Controller
Embedded

Processor

SSD

Controller

CXL

Controller

Current CXL-SSDs Face Significant Performance Challenges

6 Systems Platform Research Group at UIUC

End-to-end Execution Time of running

different workloads using DRAM v.s. CXL-SSD

CXL-SSDs suffer from 1.5-31.4× worse performance than DRAM!

Current CXL-SSDs Face Significant Performance Challenges

6 Systems Platform Research Group at UIUC

End-to-end Execution Time of running

different workloads using DRAM v.s. CXL-SSD

Excessive Processor

Pipeline Stalls

Long Flash Access Latency

Access Granularity Mismatch

CXL-SSDs suffer from 1.5-31.4×
worse performance than DRAM!

7

Long Tail Latencies Cause Excessive Processor Pipeline Stalls

Systems Platform Research Group at UIUC

Memory Type DRAM Flash

Latency ~50 ns > 3 μs

Flash access latency is order of magnitude higher than DRAM latency

Read: 3 μs

Program (write): 80 μs

Erase: 1000 μs

Z-NAND

SSD

Low CPU resource utilization

CPU Core Stall!

7

Long Tail Latencies Cause Excessive Processor Pipeline Stalls

Systems Platform Research Group at UIUC

DRAM Access: ~50ns

Using DRAM as Memory

(CPU Cache

Miss + SSD

DRAM Miss)

Flash Access:

>3μs

Using CXL-SSD as Memory

Modern processor techniques (e.g., OoO) are less effective to hide long flash latency

Utilize ILP: Run other

independent instructions

Not Enough ILP /

Not Enough Hardware Resource!

Can hide DRAM Latency

Low SSD bandwidth utilization

(CPU Cache Miss)

8 Systems Platform Research Group at UIUC

Access Granularity Mismatch Causes Inefficiencies

Flash Memory

4KB

CXL Interface (to host)

64B

DRAM Cache

1Fetch Page

2 Access

Cache Lines

The DRAM space could be

significantly wasted.
CXL-SSD

Accessed Space

Unused Space
The Page

in DRAM Cache

CXL Interface (to host)

CXL-SSD

The DRAM space could be

significantly wasted.

8 Systems Platform Research Group at UIUC

Flash Memory

4KB

64B

DRAM Cache

4Evict Page

3 Write Cache

Lines

Severe write amplification

Dirty Data

Actual Written

AmountThe Page

in DRAM Cache

Access Granularity Mismatch Causes Inefficiencies

9 Systems Platform Research Group at UIUC

Many Workloads Exhibit Poor Locality Within Each Page

Locality Distribution (CDF) of pages read from/flushed to flash memory.

(Lower line means worse locality)

(a) Ratio of cache line

accessed in

fetched pages.

(b) Ratio of cache line

written in

evicted pages.

(a) bc (b) ycsb

(b) bc (b) ycsb

9 Systems Platform Research Group at UIUC

Many Workloads Exhibit Poor Locality Within Each Page

Locality Distribution (CDF) of pages read from flash memory. (Lower line means worse locality)

R
a

ti
o
 o

f
c
a
c
h

e
 l
in

e
s

a
c
c
e
s
s
e
d
 i
n
 e

a
c
h

fe
tc

h
e
d
 p

a
g
e
.

In >90% pages,

only <40% of the

cachelines are

accessed!

ycsb

Many workloads suffer from severe DRAM space waste and write amplifications

10

Hide the Flash Access Latency with

Coordinated Context Switches

Bridge the Granularity Gap by

Rearchitecting the SSD DRAM Cache

Systems Platform Research Group at UIUC

Expand SSD DRAM Cache with

Host DRAM via Page Migrations

SkyByte: A Holistic Approach to Address CXL-SSD Challenges

SkyByte

Excessive Processor

Pipeline Stalls

Long Flash Access Latency

Access Granularity Mismatch

11 Systems Platform Research Group at UIUC

OS

Storage

I/O Request

Do context-

switch
OS

User thread

(running)

OS is not aware of

CXL-SSD accesses!

Traditional SSD CXL-based SSD

OS-based context switch opportunity is missing in CXL-SSDs!

Can We Hide Long Flash Latency with OS-Based Context Switches?

CXL

Memory
Request

User thread

(running)

Long

Latency

12 Systems Platform Research Group at UIUC

Is It Possible to Build a New Context Switch Mechanism for CXL-SSDs?

CXL

Memory

Request

CPU

Core Core Core

Cache Cache Cache

LLC

CXL-based SSD

Long

Latency

When? Only on a Long Flash Latency

Which? Only Cores Waiting for the Data

Core Core

How? OS Should Be Notified

12 Systems Platform Research Group at UIUC

Is It Possible to Build Context Switch Mechanism for CXL-SSDs?

Cannot Directly Intercept

CXL-SSD Accesses
Not Aware of

SSD Access Latency

Not Aware of CPU

Microarchitectural Status

None of them can by itself decide whether to trigger a context switch

When? Only on a Long Flash Latency

Which? Only Cores Waiting for the Data

How? OS Should Be Notified

13 Systems Platform Research Group at UIUC

Coordinated Context Switch Mechanism for CXL-SSDs

SSD

Controller

Wake up via

exception

Decide whether to do a

switch on specific cores

Estimate flash access

latency

Indicate long

accesses

select a new thread

OS can wisely choose

the next thread

Procedure of Coordinated Context Switch in SkyByte

14 Systems Platform Research Group at UIUC

Host CPU SSD Controller

DRAM Cache

Miss

1 2

Host

OS

Estimated flash latency

Measured

context switch overhead

Context Switch

Trigger Policy

Not triggerTrigger

Larger than?

Procedure of Coordinated Context Switch in SkyByte

14 Systems Platform Research Group at UIUC

Host CPU SSD Controller

Context Switch

Trigger Policy

DRAM Cache

Miss

Trigger

Do Not

Trigger

1 2

Host

OS

Wait

CXL.mem No Data Response (NDR) message format and opcode definitions

We introduced a new

opcode using reserved

encoding bits

Procedure of Coordinated Context Switch in SkyByte

14 Systems Platform Research Group at UIUC

Host CPU SSD Controller

Context Switch

Trigger Policy

DRAM

Cache Miss

Trigger

Do Not

Trigger

1 2
3

Trigger SkyByte Long

Delay Exception

Context Switch to

Another Thread

Host

OS

Wait

Data Ready in

SSD DRAM

4
Thread

scheduled
again

SSD DRAM

Cache Hit

Get Data

15 Systems Platform Research Group at UIUC

Deploying A Cache-line Granular Write Log to Bridge the Granularity Gap

CXL Memory Interface (to Host)

CXL-SSD

Log Index

Write Log

Data Cache

Flash Translation Layer

Flash Memory .

(64B Cachelines)

(4KB Pages)

SSD DRAM

64B (Cacheline) Granularity

Write Log

4KB (Page) Granularity

Data Cache

15 Systems Platform Research Group at UIUC

Deploying A Cache-line Granular Write Log to Bridge the Granularity Gap

Log Index

Write Log (64B Cachelines)

64B (Cacheline) Granularity

Write Log

The DRAM Space Could Be

Significantly wasted

Severe Write Amplification

Save DRAM Space

with A Finer Granularity

Reduce Flash Write Traffic

with A Larger Coalescing Window

16 Systems Platform Research Group at UIUC

Deploying an Indexing Table for Fast Log Lookup

CXL Memory Interface (to Host)

SSD DRAM

Log Indexing

Table

Write Log

Data Cache

Read Request

Read

Cacheline

Read Log

Both write log and data cache can

hold newest version of data

Lookups needed

to access both data cache and log

Deploy an Indexing Hash Table

to achieve fast log lookup

Cacheline Address Log Index

Mapping

17 Systems Platform Research Group at UIUC

Supporting Efficient Log Indexing with a Two-level Hash Table

Cacheline Address Log Index

0x478f40 6

0xff6ec0 7

… …

Two-Level Hash Table

Page Index (LPA) 2nd-level Table

0x478f40

… …

Cacheline Index Log Index

15 6

16 8

17 9

… …

…

1st Level Table

2nd Level Tables

“Indexing for Cachelines in Page X”

Plain Hash Table

Flushing dirty data in when log is full

search
Collect all dirty

cachelines in

one page

We have to query every possible cacheline

index in the page even many are not in the log!

We don’t know which cachelines in a specific

page are in the log!

2nd level table will have a small

size if only a few cachelines of the

page are in the log.

Inefficient!

to flash

17 Systems Platform Research Group at UIUC

Supporting Efficient Log Indexing with a Two-level Hash Table

Two-Level Hash Table

Page Index (LPA) 2nd-level Table

0x478f40

… …

Cacheline Index Log Index

15 6

16 8

17 9

… …

…

1st Level Table

2nd Level Tables

“Indexing for Cachelines in Page X”

Traverse small 2nd level tables to look

up all dirty data in each page

Flushing dirty data when log is full

18 Systems Platform Research Group at UIUC

Maintaining Data Consistency with Simultaneous Update

CXL Memory Interface (to Host)

SSD DRAM

Log Index

Write Log

Data Cache

1
Append

Cacheline
Update

Cacheline

1

Write Request

Update both write log

and data cache (If hit)

19 Systems Platform Research Group at UIUC

Data Cache Hit:

Flush the page from

data cache

Data Cache Miss:

Fetch from flash, merge

data, flush back

When a page is going

to be flushed from log:

Log compaction

Maintaining Data Consistency with Simultaneous Flushing

20 Systems Platform Research Group at UIUC

Expand SSD DRAM Cache with Adaptive Page Migration

SSD DRAM Cache

Page Access Counts
Tracks

DRAM

CXL-SSD
CXL.mem

SSD

Controller

Hot Pages

Limited Capacity

Faster

Put It All Together

21 Systems Platform Research Group at UIUC

DRAM

SSD

CXL

DDR

Host CPU

SkyByte
Context Switch Mechanism

CXL-Aware SSD DRAM Page Migration

31

SkyByte

Evaluation

Implementation
• Trace Collection: Intel PIN

• Simulation: Trace-driven simulator based on MacSim

and SimpleSSD

Benchmarks

Baselines • Base-CSSD: The SOTA CXL-based SSD

• DRAM-only: The ideal case assuming infinite DRAM

Name Category Memory

Footprint
Write Ratio

bfs-dense Graph Processing 9.13GB 25%

bc Graph Processing 8.18GB 11%

radix HPC 9.60GB 29%

srad Image Processing 8.16GB 24%

ycsb Database 9.61GB 5.0%

tpcc Database 15.77GB 36%

dlrm Machine Learning 12.35GB 32%

*SSD DRAM Cache Size Simulated: 512MB

End-to-End Performance Improvement of SkyByte

23 Systems Platform Research Group at UIUC

SkyByte outperforms SOTA CXL-SSD designs by 6.11×

SkyByte reaches 75% of the performance of ideal case

Normalized execution time of SkyByte variants over Base-CSSD (lower is better).

Skybyte-P: Page Migration

Skybyte-WP: P + Write Log

Skybyte-Full: WP +

Context Switch

Write Traffic of SkyByte to Flash Chips

24 Systems Platform Research Group at UIUC

SkyByte reduces the write traffic to flash chips by

23.08×

Normalized Flash Write Traffic of SkyByte variants over Base-CSSD (log scale, lower is better).

Skybyte-P: Page Migration

Skybyte-WP: P + Write Log

Skybyte-Full: WP +

Context Switch

34

SkyByte

Summary

Coordinated Context Switch

Rearchitecting the SSD DRAM Cache

Adaptive Page Migrations

Outperforms SOTA CXL-SSD by 6.11×

35

Thank You!

Haoyang Zhang

Yuqi Xue, Yirui Eric Zhou, Shaobo Li, Jian Huang

Systems Platform Research Group

	full talk
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

