G10: Enabling An Efficient Unified GPU Memory and

Storage Architecture with Smart Tensor Migrations

Haoyang Zhang*, Yirui Eric Zhou*, Yuqgi Xue, Yiqi Liu, Jian Huang

Systems Platform Research Group

*Co-primary authors.

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Large DNN Workloads Are Hungry for Memory

Parameter Count (Billion)

10000

1000

=]
=]
o

[
o

]

0.1

0.01

Al and Memory Wall

10TB Baidu RecSys
®

Transformer Size: 410x / 2 yrs
Al HW Memory: 2x [/ 2 yrs

Switch Transform

GShard egatron-Turing

G
A100-80 (80GB)

V100 (32GB) TPUv3 (32GB)

P100 A100 (40GB)

TPUv2 (16GB)

Inception V4 ResNext101

E ® o
1 ResNet50 DenseNet
i [T X
I | T I 1 I I I | 1 1 I I I | 1 1 1 1
2016 2017 2018 2019 2020 2021 2022

Large DNN Workloads Are Hungry for Memory

Al and Memory Wall

] 10TB Baidu RecSys
10000 °
1 Transformer Size: 410x/ 2 yrs Switch Transformer
1 Al HW Memory: 2x /2 yrs °
1000 L y GShard Megatron-Turing

E] > ° On-board Mem
c] -—
5 GPT3 N-00ar emory
= 1 ®
@ 100
g
3] Microso&T'NL(’;uoo_so(SOGB) H100 (80GB) ---------------VS T T T T TP r TR R RN
o Megatron LM @ Py ° .
5 10 V100 (32GB) TPUV3 (32GB) ® ®
Ll 3
g] P100 (12GB) Y GPT-2 A100 (40GB)
© 1 ° TPUv2 (16GB) o
© 1
e E BERT

| Inception V4 ResNext101 TransformerGPT-l

0.1 ® PY ®
1™ e ’ [ens of TBs
1 ° °o®
0.01- L —7— — — — — — —
2016 2017 2018 2019 2020 2021 2022
YEAR

DNN Model Size

Expanding GPU Memory with Flash Memory

Tens of TBs

Flash Memory

———————————————————————————

@ Large Capacity

__,
_|
@
-
o
=4
0
vy
)
+

- e e e e e e = =

Tens of TBs

DNN Model Size

State-of-the-Art Solutions Are Not Efficient Enough

GPUDirect Storage

CPU

<«

—— o e o

~

Host Memory

GPU Memory

o o e e e e e e e e e e e e e

N

\

-

L e e e e

AMD SSG

RADEONPROSS

N

~

AMDZ1
0100000

GPU

HBM SSD

I e e e e e

-

-

/

[U A U U U R U U U ———————

~

- —

-

Academic Research

DRAGON: Breaking GPU Memory Capacity Limits

cele TG + NTXNJANA A

'

ZnG: Architecting GPU Multi-Processors with New
Flash for Scalable Data Analysis

Jie 71 d Myoungsoo Jung
Computer Architecture and Memory Systems Laboratory,
Korea Advanced Institute of Science and Technology (KAIST)
http://camelab.org

S[GPUcore] 2
B[11 cache o GDDRS
. £ 100 3

H H
B E
8 £
g’ i
=
3
E
3 +

085 4t
PESWE ™

g g
& (_\asr\“ (Rt =N

to buffes

r th

han prior work
GPU, SSD, heterogencous sys-
AND, DRAM

() HybrdGPU design (b) Bandwidth,
An integrated Hybrid
ysis.

iPU architecture and the

ally, the host first needs to load the target page
from the NVMe SSDs to the host-side main memory and then
Over the past few years, graphics processing units (GPUs) moves the same data from the memory to the GPU memaory
become prevailing to accelerate the large-scale data-intensive The data copy across different computing domains, the limited
applications such as graph analysis and bigdata [1}-[5], be- performance of NVMe SSD and the bandwidth constraints of
cause of the high computing power brought by their massive various hardware interfaces (i.e., PCle) significantly i
cores. To reap the benefits from the GPUs, large-scale applica- the latency of servicing page faults, which in tum deg
tions are decomposed into multiple GPU kernels, cach contains overall performance of many applications at the user-level.

I. INTRODUCTION

des the

Flash Bandwidth is the Bottleneck!

-

N o e e e e e e e e e e o e o e

Goal: Expand GPU Memory While Achieving Near-ldeal Performance

Unlimited Memory

0

On-board Memory Flash Memory |

\
N e e e e e e e e e e o e e e e e e = - — -

GPU Kernel Computation

¥
Kernel 1 Stall Kernel 2 Stall Kernel 3

Data | - Data
L Access 2 J, \Access 3) Stalled by

slow data
transfer!

Host Memory/SSD—GPU Data Transfer

Overlap Data I/0O and Computation

Goal: Expand GPU Memory While Achieving Near-ldeal Performance

Unlimited Memory

0

On-board Memory Flash Memory |

\
N e e e e e e e e e e o e e e e e e = - — -’

GPU Kernel Computation

Kernel 1 | Kernel 2 | Kernel 3

[Data I Data]
| Access 2 | Access 3

Host Memory/SSD—GPU Data Transfer

Achieve Near-ldeal Performance

Overlap Data I/O and Computation with Slow Memory

Observation 1: Active Tensors Require Only A Small Portion of GPU Memory

active

100% +

-

S — U R p—
——— ____-
e e
— - ___‘h

10% 1

1% -

0

600 800 1000 1200
(a) BERT-128

200 400

100% -

—
--——__ —
e

10% |

Memory Consumption

600 800 1000 1200 1400
(b) ViT-512

200 400

== gll — gctive
100% - e ——
i ~" T Ts~
10% § 3
1% 1 wmmmm..ﬂlm,. " m | _
0 200 400 600 800 1000 1200
(c) ResNet152-512

100%

10%

1% 1

400 600
(d) Inceptionv3-512

GPU Kernel Index (Program Progress)

800

Observation 1: Active Tensors Require Only A Small Portion of GPU Memory

Active + Inactive
—————— " Tensors

100% A

L L
———--‘ __--_-____—
L L
— -

10% -

Active Tensors
(less than 10%,
~1% on average)

1% -t

Memory Consumption

0 200 400 600 800 1000 1200
GPU Kernel Index (Program Progress) of BERT-128

Most Tensors Are Inactive and Can Be Swapped Out During Training

Observation 2: Many Tensors Are Unused for A Long Time

W
=
[ab}
=
= 10%
Q
2
4
]
W
=

~ 107 — 107
106 o 106
105 103
/ 104
103 Pa 103
102 T‘J 102 J-/
101 101

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

(a) BERT-128 (b) ViT-512
—_ 108 _b# 108 T T | T |
ESTY = 107 —
2 106 106 v
£ 105 105
10t 104
= 10° 103
I3 102 102
€ 10! 10!
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
(c) ResNet152-512 (d) Inceptionv3-512

Distribution (CDF) of tensor inactive period lengths

Observation 2: Many Tensors Are Unused for A Long Time

107
106
B
= 5
~ 10 X
=
or= 104 \
= \
Z 103 More than 50% of the inactive periods
@) -
T last longer than 100 milliseconds.
£ 102
10!

0% 20% 40% 60% 80% 100%
Distribution (CDF) of tensor inactive period lengths for BERT-128

G10: Break the GPU Memory Wall with Smart Tensor Migrations

4 N 4)

O——-

o—] EXxtract the Semantic Knowledge :

Q===

Dy of Tensors in DNN Models
_
[

/
)
™) schedule Tensor Migrations — G 10
: using Semantic Knowledge
_ /
4)

(I)'

=2y Simplify the Heterogeneous
_fi | Memory Management for GPU —

- J _)

Tensor Liveness Analysis with ML Compiler Support

[Joperators [A1]intermediate tensors |w1| global tensors

(] tensoris active [| tensoris alive tensoris not alive [] tensor is inactive

Forward Pass—— —Backwar_d Pass——
! : i | '

~+[]~E~>[Conv1(F)|E1\~E—>[Conv2(F)|EZ‘~E->[Add(F) [A3|=> +.- .- —§+:| Add(B]~+:|Conv2]—»:|00nv1(8)]~

& e dd

€ .

A2

W1

With offline compile-time profiling, we can:
9 Estimate the active time of each tensor

g Estimate the lifetime of each tensor

e Estimate the inactive periods of each tensor

Tensor Liveness Analysis with ML Compiler Support

Semantic Knowledge of A DNN Model

Inactive Tensor Table Kernel Time Table
Index | Tensor Size Start End Inactive Time Kernel Estima_lted
ID ID Kernel ID | Kernel ID ID Exe. Time
1 35 500MB 5 920 151 millisecs 1 1.0 millisecs
2 36 2GB 2 924 153 millisecs 2 2.6 millisecs
3 37 1GB 6 26 7 millisecs 3 0.01 millisecs

Enabling Smart Tensor Migrations with Rich Semantic Knowledge

What

A @
- ,‘h‘-! Identify the Most Beneficial Inactive Tensor

Where

Host Memory
Decide Eviction Destination

When

Decide the Best Time for Migrations

How

Instrument GPU Program with Migration Instructions

Systems Platform Res

Deciding the Most Beneficial Tensor is a Dynamic Optimization Problem

Decision Strategy: Choose tensors with the largest size and longest inactive time.

Inactive Period
Tensor A < =

>

mem pressure

Evicting a tensor will affect GPU memory
> pressure and I/O bandwidth utilization.

GPU Mefnhory Pressure time

Evict (I i
Fetch | 3)

. =
/O Bandwidth Utilization tIme

Each tensor migration will affect the subsequent decisions

Utilizing Dynamic Algorithm to Decide Which Tensor to Evict

! I
! I
! Ce—si< >0 !
! I
! 1

« Dynamic Algorithm: Keep track of
(1) inactive tensor periods,

Utilizing Dynamic Algorithm to Decide Which Tensor to Evict

Inactive Periods

tensor X . O B J
tensorY | =mmm——=)

A Evict Tensor Y in Period Al
m 1o IJL'LI..L'r than B!

W%\GPU Capacity
/ S~
time

Evict (T]
Fetch [)

|/O Bandwidth Utilization

e

mem pressur

e Update the impact of this decision

Deciding the Eviction Destination Based on the Available SSD Bandwidth

GPU

If SSD’s current traffic is 9
saturated, try host memory

\/ 0 Consider SSD first

Host SSD

e If both SSD and Host are busy, go for SSD.

When Should We Migrate Tensors to Eliminate Data Access Stalls

Tensor Inactive Period

/ “latest safe / — Time
Start eviction once the prefetch time” / o, UCEIEr ST
tensor becomes inactive Calculate the time needed B Available 1/O
to fetch the tensor Bandwidth

Stalls May Happen Due to Performance Variations at Runtime

Prefetching Too Early will Lose Eviction Benefits

Eliminate Potential Stalls without Losing Eviction Benefits!

Eliminate Potential Stalls with Smart Prefetching Algorithm

9 Re-schedule prefetch time t; ->t§

evicted tensor inactive period i

— _ ® o » time
A optimized prefetch time /tr ! ti: N latest safe prefetch time
.. (X T,

Mem Pressure

Time

How to Implement Tensor Migrations

)

G10 Instrumented Program \

g10_alloc(tensor20, 40960);
g10_prefetch(, 40960);

// Kernel 2 RelLU(input, output)
forward_RelLU_l12(tensor5, tensorb);

New Instructions

Instruction Objective

910 _pre_evict() | Evict Inactive Tensor :>
g10 prefetch() | Prefetch Active Tensor

g10_alloc(&tensor22, 77073360);
g10_alloc(&tensor2914, 4110417920);

// Kernel 3 MaxPool2d(input, output)
forward_MaxPool2d_13(tensor5, tensor20);

0 N N R WD

O

—_
(=)

g10 alloc() Allocate Alive Tensor

—_
=

—_
Do

// Kernel 4 Conv2d(input, output, filter, workspace)
forward_conv2d_l4(tensor20, tensor22, tensor23, tensor2914);
14 gl0_free(tensor2914);

\\\\ii~i1®preevict(, 40960, SSD); "/////
16 ...

g10_free() Discard Dead Tensor

_
W

G10 will migrate tensors across GPU memory, host memory and Flash memory transparently

A Unified GPU Memory and Storage Architecture

|
R TR
Track Tensors Using the TR e / (__CPUMem l
Virtual Add [cruadr | S I
Irtua ress | 7 -
BRE Accel Addr || [] K |
I 1 Frash Addr |~ _AccelMem) 2 |
: : . ; N 2 |
Integrating SSD into the UVM I i [1] [FiashAdar \Qﬂ] L
| NN . ,
\
N e m e o —_ .’
~ - -
~ ~ - _ -
PCle S~ -7
GPU . Host ! CUDA
Switch GPU Driver Extended UVM _
e e | , Driver + | Runtime
E GPU Main Memory ‘ SSD \ CPU Main Memory | Kernel Space . User Space

Put It All Together

" DNN Model)

©r0

G10 Instrumented Program

1
1
1
1
1
1
. Cha
! i v
@ 1 = cudalLaunchKernel (...);
!) cublasSgemm(...);
1 : gl 0_pre_evi ct (v_addr ;
@ _P v target) ;
@ ¥ CUDNN CALL(...);

gl0_prefetch (v_addr);

vy

g

Tensor Liveness Analysis

\ S gy g Offline
L e R L e STttt Runtime
: PCle : :
' GPU Switch Host ' | CUDA :
: GPU Driver Extended UVM 1 . :
| r2nsocons e . L . Driver : Runtime :
. ‘| GPU Main Memory CPU Main Memory E Kernel Space E User Space E

Implementation Trace-driven simulator based on
P UVMSmart and GPGPU-SIim

Benchmarks BERT, ViT, ResNet, Inceptionv3, SENet
Baselines

® Ideal: GPU with infinite memory

® Base UVM: Basic GPU-CPU-SSD UVM system w/o smart

G10

Evaluation

migrations
* DeepUM+: UVM system with correlation-based prefetch
® FlashNeuron: Direct GPU-SSD communication w/ selective

tensor offloading

Performance Benefit of G10 for Training Large Models

Q

= m Base UVM m®mFlashNeuron m®mDeepUM+ ®mGl10 mldeal
O

=

e

@

o

e

Q

N

'©

: : :

> o . o

BERT VIT Inceptionv3 ResNet152 SENet154

With limited GPU memory, G10 achieves 90.3% of the ideal performance

Performance Breakdown of G10

. m Compute & Data Transfer = Compute Stall FlashNeugon DeepU'V'*
X 100 Base UVM \
<
S 80
=
~ 60
QO
5 40
&)
g<) 20
LL]
0

BERT Inceptlonv3 ResNet152 SENet154

G10 incurs the least stall time, as it achieves better I/O and computation overlapping

Smart Tensor Migration Mechanism
for DNN Workloads

G10
Summary

A Unified Memory and Storage Architecture
for Simplifying Memory Management

Achieves 90.3% of the Ideal
Performance

Thank You!

Haoyang Zhang
Yirul Eric Zhou, Yugi Xue, Yiqgi Liu, Jian Huang

Systems Platform Research Group
[ILLINOIS

URBANA-CHAMPAIGN

	full talk
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

