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Large DNN Workloads Are Hungry for Memory
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Tens of GBs

DNN Model Size

On-board Memory

Tens of TBs

---------------vs.----------------

Large DNN Workloads Are Hungry for Memory



Expanding GPU Memory with Flash Memory
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Flash Memory

Tens of TBs

Low Cost
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Tens of GBs

DNN Model Size

On-board Memory

Tens of TBs

---------------vs.----------------

+

Large Capacity



State-of-the-Art Solutions Are Not Efficient Enough
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AMD SSG Academic Research

Flash Bandwidth is the Bottleneck! 

GPUDirect Storage

Systems Platform Research Group at UIUC

GPU

HBM SSD
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Overlap Data I/O and Computation

On-board Memory Flash Memory

+ Unlimited Memory≈

Goal: Expand GPU Memory While Achieving Near-Ideal Performance

Systems Platform Research Group at UIUC
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Overlap Data I/O and Computation

On-board Memory Flash Memory

+ Unlimited Memory≈
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Achieve Near-Ideal Performance 

with Slow Memory

Goal: Expand GPU Memory While Achieving Near-Ideal Performance
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Data 

Access 3

…

Host Memory/SSD→GPU Data Transfer

GPU Kernel Computation 
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Observation 1: Active Tensors Require Only A Small Portion of GPU Memory
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Most Tensors Are Inactive and Can Be Swapped Out During Training

Active Tensors 

(less than 10%, 

~1% on average)

Active + Inactive 

Tensors

Systems Platform Research Group at UIUC

GPU Kernel Index (Program Progress) of BERT-128
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Observation 1: Active Tensors Require Only A Small Portion of GPU Memory



Observation 2: Many Tensors Are Unused for A Long Time
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Distribution (CDF) of tensor inactive period lengths
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Distribution (CDF) of tensor inactive period lengths for BERT-128
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More than 50% of the inactive periods 

last longer than 100 milliseconds.

Many Tensors Can Be Safely Swapped Out to Slow Memory

Observation 2: Many Tensors Are Unused for A Long Time
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Extract the Semantic Knowledge 

of Tensors in DNN Models

Tensor Liveness Analysis

Smart Tensor Placement and Migration

Schedule Tensor Migrations 

using Semantic Knowledge

A Unified Memory and Storage Architecture

GPU 

Memory 
SSD

Host 

Memory

Systems Platform Research Group at UIUC

Simplify the Heterogeneous 

Memory Management for GPU

G10: Break the GPU Memory Wall with Smart Tensor Migrations

G10



2 Estimate the lifetime of each tensor

With offline compile-time profiling, we can: 

1

Tensor Liveness Analysis with ML Compiler Support
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Estimate the inactive periods of each tensor3

Estimate the active time of each tensor
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Tensor Liveness Analysis with ML Compiler Support

Index 

ID

Tensor 

ID
Size

Start 

Kernel ID

End 

Kernel ID
Inactive Time

1 35 500MB 5 920 151 millisecs

2 36 2GB 2 924 153 millisecs

3 37 1GB 6 26 7 millisecs

…

Kernel 

ID

Estimated 

Exe. Time

1 1.0 millisecs

2 2.6 millisecs

3 0.01 millisecs

…

Inactive Tensor Table Kernel Time Table

Semantic Knowledge of A DNN Model



Enabling Smart Tensor Migrations with Rich Semantic Knowledge
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Identify the Most Beneficial Inactive Tensor
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A

B

C

Host Memory

SSD

GPU

GPU

Fetch

Evict

What

Decide Eviction Destination

Where

Decide the Best Time for Migrations 

When

Instrument GPU Program with Migration Instructions 

How

Program

</>

Migration A

Migration B
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Each tensor migration will affect the subsequent decisions 

Deciding the Most Beneficial Tensor is a Dynamic Optimization Problem

Decision Strategy: Choose tensors with the largest size and longest inactive time. 

Evicting a tensor will affect GPU memory 

pressure and I/O bandwidth utilization.
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• Dynamic Algorithm: Keep track of 

(1) inactive tensor periods,             

(2) GPU memory pressure, and         

(3) estimated I/O bandwidth utilization.

Utilizing Dynamic Algorithm to Decide Which Tensor to Evict
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Utilizing Dynamic Algorithm to Decide Which Tensor to Evict

1
Estimate the impact for evicting each 

inactive tensor

2
Choose the one which will reduce the 

highest memory pressure (    ) , and cause 

the least I/O bandwidth pressure (            )

3 Update the impact of this decision

A is better than B!
Evict Tensor Y in Period A!



Deciding the Eviction Destination Based on the Available SSD Bandwidth
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GPU

SSDHost

1 Consider SSD first2
If SSD’s current traffic is 

saturated, try host memory

3 If both SSD and Host are busy, go for SSD.



When Should We Migrate Tensors to Eliminate Data Access Stalls
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Stalls May Happen Due to Performance Variations at Runtime 

Tensor Inactive Period

Time“latest safe 

prefetch time”
1

Start eviction once the 

tensor becomes inactive 2 Calculate the time needed 

to fetch the tensor

Eliminate Potential Stalls without Losing Eviction Benefits!

t = 
Tensor Size

Available I/O 

Bandwidth

Prefetching Too Early will Lose Eviction Benefits 



16 Systems Platform Research Group at UIUC

1 Try to find an earlier time

2 Re-schedule prefetch time    ->

Eliminate Potential Stalls with Smart Prefetching Algorithm
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How to Implement Tensor Migrations  

G10 Instrumented Program

Instruction Objective

g10_pre_evict() Evict Inactive Tensor

g10_prefetch() Prefetch Active Tensor

g10_alloc() Allocate Alive Tensor

g10_free() Discard Dead Tensor

New Instructions

G10 will migrate tensors across GPU memory, host memory and Flash memory transparently
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Track Tensors Using the 

Virtual Address

Systems Platform Research Group at UIUC

A Unified GPU Memory and Storage Architecture

Integrating SSD into the UVM



Put It All Together
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Evaluation

Implementation
Trace-driven simulator based on

UVMSmart and GPGPU-Sim

Benchmarks

Baselines

• Ideal: GPU with infinite memory

• Base UVM: Basic GPU-CPU-SSD UVM system w/o smart 

migrations

• DeepUM+:  UVM system with correlation-based prefetch

• FlashNeuron: Direct GPU-SSD communication w/ selective 

tensor offloading

BERT, ViT, ResNet, Inceptionv3, SENet
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Performance Benefit of G10 for Training Large Models
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With limited GPU memory, G10 achieves 90.3% of the ideal performance
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Performance Breakdown of G10
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G10 incurs the least stall time, as it achieves better I/O and computation overlapping
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Summary

Smart Tensor Migration Mechanism 

for DNN Workloads

A Unified Memory and Storage Architecture 

for Simplifying Memory Management

Achieves 90.3% of the Ideal 

Performance
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Thank You!

Haoyang Zhang

Yirui Eric Zhou, Yuqi Xue, Yiqi Liu, Jian Huang

Systems Platform Research Group
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