G10: Enabling An Efficient Unified GPU Memory and Storage Architecture with Smart Tensor Migrations

Haoyang Zhang*, Yirui Eric Zhou*, Yuqi Xue, Yiqi Liu, Jian Huang Systems Platform Research Group

*Co-primary authors.

Large DNN Workloads Are Hungry for Memory

Photo credit: https://github.com/amirgholami/ai_and_memory_wall

Large DNN Workloads Are Hungry for Memory

Photo credit: https://github.com/amirgholami/ai_and_memory_wall

Expanding GPU Memory with Flash Memory

Systems Platform Research Group at UIUC

State-of-the-Art Solutions Are Not Efficient Enough

Flash Bandwidth is the Bottleneck!

Goal: Expand GPU Memory While Achieving Near-Ideal Performance

Overlap Data I/O and Computation

Goal: Expand GPU Memory While Achieving Near-Ideal Performance

Host Memory/SSD→GPU Data Transfer

Overlap Data I/O and Computation

Achieve Near-Ideal Performance with Slow Memory

Observation 1: Active Tensors Require Only A Small Portion of GPU Memory

GPU Kernel Index (Program Progress)

Observation 1: Active Tensors Require Only A Small Portion of GPU Memory

Most Tensors Are Inactive and Can Be Swapped Out During Training

Observation 2: Many Tensors Are Unused for A Long Time

Distribution (CDF) of tensor inactive period lengths

Observation 2: Many Tensors Are Unused for A Long Time

Distribution (CDF) of tensor inactive period lengths for BERT-128

Many Tensors Can Be Safely Swapped Out to Slow Memory

G10: Break the GPU Memory Wall with Smart Tensor Migrations

Tensor Liveness Analysis with ML Compiler Support

With offline compile-time profiling, we can:

- Estimate the active time of each tensor
- Estimate the lifetime of each tensor
- Estimate the inactive periods of each tensor

Tensor Liveness Analysis with ML Compiler Support

		diate tensors W1 global t	
tensor is active	tensor is alive	<pre>// tensor is not alive</pre>	tensor is inactive

Semantic Knowledge of A DNN Model

Inactive Tensor Table

Kernel Time Table

Index ID	Tensor ID	Size	Start Kernel ID	End Kernel ID	Inactive Time	Kernel ID	Estimated Exe. Time
1	35	500MB	5	920	151 millisecs	1	1.0 millisecs
2	36	2GB	2	924	153 millisecs	2	2.6 millisecs
3	37	1GB	6	26	7 millisecs	3	0.01 millisecs

Enabling Smart Tensor Migrations with Rich Semantic Knowledge

Deciding the Most Beneficial Tensor is a Dynamic Optimization Problem

Decision Strategy: Choose tensors with the largest size and longest inactive time.

Evicting a tensor will affect GPU memory pressure and I/O bandwidth utilization.

Each tensor migration will affect the subsequent decisions

Utilizing Dynamic Algorithm to Decide Which Tensor to Evict

Dynamic Algorithm: Keep track of (1) inactive tensor periods,
(2) GPU memory pressure, and
(3) estimated I/O bandwidth utilization.

Utilizing Dynamic Algorithm to Decide Which Tensor to Evict

I/O Bandwidth Utilization

Estimate the impact for evicting each inactive tensor

Update the impact of this decision

Deciding the Eviction Destination Based on the Available SSD Bandwidth

When Should We Migrate Tensors to Eliminate Data Access Stalls

Eliminate Potential Stalls with Smart Prefetching Algorithm

How to Implement Tensor Migrations

New Instructions

Instruction	Objective		
g10_pre_evict()	Evict Inactive Tensor		
g10_prefetch()	Prefetch Active Tensor		
g10_alloc()	Allocate Alive Tensor		
g10_free()	Discard Dead Tensor		

G10 will migrate tensors across GPU memory, host memory and Flash memory transparently

A Unified GPU Memory and Storage Architecture

Put It All Together

G10 Evaluation

Implementation

Trace-driven simulator based on UVMSmart and GPGPU-Sim

Benchmarks

BERT, ViT, ResNet, Inceptionv3, SENet

Baselines

- **Ideal:** GPU with infinite memory
- Base UVM: Basic GPU-CPU-SSD UVM system w/o smart migrations
- **DeepUM+:** UVM system with correlation-based prefetch
- FlashNeuron: Direct GPU-SSD communication w/ selective tensor offloading

Performance Benefit of G10 for Training Large Models

With limited GPU memory, G10 achieves 90.3% of the ideal performance

Performance Breakdown of G10

G10 incurs the least stall time, as it achieves better I/O and computation overlapping

Smart Tensor Migration Mechanism for DNN Workloads

G10 Summary

A Unified Memory and Storage Architecture for Simplifying Memory Management

Achieves 90.3% of the Ideal Performance

Thank You!

Haoyang Zhang

Yirui Eric Zhou, Yuqi Xue, Yiqi Liu, Jian Huang

Systems Platform Research Group

