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Large DNN Workloads Are Hungry for Memory
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Large DNN Workloads Are Hungry for Memory
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Expanding GPU Memory with Flash Memory
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State-of-the-Art Solutions Are Not Efficient Enough
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ally, the host first needs to load the target page
from the NVMe SSDs to the host-side main memory and then
Over the past few years, graphics processing units (GPUs)  moves the same data from the memory to the GPU memaory
become prevailing to accelerate the large-scale data-intensive  The data copy across different computing domains, the limited
applications such as graph analysis and bigdata [1}-[5], be-  performance of NVMe SSD and the bandwidth constraints of
cause of the high computing power brought by their massive  various hardware interfaces (i.e., PCle) significantly i
cores. To reap the benefits from the GPUs, large-scale applica-  the latency of servicing page faults, which in tum deg
tions are decomposed into multiple GPU kernels, cach contains  overall performance of many applications at the user-level.

I. INTRODUCTION
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Flash Bandwidth is the Bottleneck!

-

N o e e e e e e e e e e o e o e



Goal: Expand GPU Memory While Achieving Near-ldeal Performance

Unlimited Memory
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Goal: Expand GPU Memory While Achieving Near-ldeal Performance

Unlimited Memory
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Achieve Near-ldeal Performance

Overlap Data I/O and Computation with Slow Memory




Observation 1: Active Tensors Require Only A Small Portion of GPU Memory
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Observation 1: Active Tensors Require Only A Small Portion of GPU Memory
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Most Tensors Are Inactive and Can Be Swapped Out During Training




Observation 2: Many Tensors Are Unused for A Long Time
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Observation 2: Many Tensors Are Unused for A Long Time
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G10: Break the GPU Memory Wall with Smart Tensor Migrations
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Tensor Liveness Analysis with ML Compiler Support
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With offline compile-time profiling, we can:
9 Estimate the active time of each tensor

g Estimate the lifetime of each tensor

e Estimate the inactive periods of each tensor




Tensor Liveness Analysis with ML Compiler Support

Semantic Knowledge of A DNN Model

Inactive Tensor Table Kernel Time Table
Index | Tensor Size Start End Inactive Time Kernel Estima_lted
ID ID Kernel ID | Kernel ID ID Exe. Time
1 35 500MB 5 920 151 millisecs 1 1.0 millisecs
2 36 2GB 2 924 153 millisecs 2 2.6 millisecs
3 37 1GB 6 26 7 millisecs 3 0.01 millisecs




Enabling Smart Tensor Migrations with Rich Semantic Knowledge

What

A @
- ,‘h‘-! Identify the Most Beneficial Inactive Tensor

Where

Host Memory
Decide Eviction Destination

When

Decide the Best Time for Migrations

How

Instrument GPU Program with Migration Instructions

Systems Platform Res




Deciding the Most Beneficial Tensor is a Dynamic Optimization Problem

Decision Strategy: Choose tensors with the largest size and longest inactive time.

Inactive Period
Tensor A < =

>

mem pressure

Evicting a tensor will affect GPU memory
> pressure and I/O bandwidth utilization.

GPU Mefnhory Pressure time

Evict (I i
Fetch | 3 )

. =
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Each tensor migration will affect the subsequent decisions




Utilizing Dynamic Algorithm to Decide Which Tensor to Evict
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Utilizing Dynamic Algorithm to Decide Which Tensor to Evict

Inactive Periods
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Deciding the Eviction Destination Based on the Available SSD Bandwidth

GPU

If SSD’s current traffic is 9
saturated, try host memory

\/ 0 Consider SSD first

Host SSD

e If both SSD and Host are busy, go for SSD.




When Should We Migrate Tensors to Eliminate Data Access Stalls

Tensor Inactive Period

/ “latest safe / — Time
Start eviction once the prefetch time” / o, UCEIEr ST
tensor becomes inactive Calculate the time needed B Available 1/O
to fetch the tensor Bandwidth

Stalls May Happen Due to Performance Variations at Runtime

Prefetching Too Early will Lose Eviction Benefits

Eliminate Potential Stalls without Losing Eviction Benefits!




Eliminate Potential Stalls with Smart Prefetching Algorithm
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How to Implement Tensor Migrations

)

G10 Instrumented Program \

g10_alloc(tensor20, 40960);
g10_prefetch( , 40960);

// Kernel 2 RelLU(input, output)
forward_RelLU_l12(tensor5, tensorb);

New Instructions

Instruction Objective

910 _pre_evict() | Evict Inactive Tensor :>
g10 prefetch() | Prefetch Active Tensor

g10_alloc(&tensor22, 77073360);
g10_alloc(&tensor2914, 4110417920);

// Kernel 3 MaxPool2d(input, output)
forward_MaxPool2d_13(tensor5, tensor20);
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g10 alloc() Allocate Alive Tensor
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// Kernel 4 Conv2d(input, output, filter, workspace)
forward_conv2d_l4(tensor20, tensor22, tensor23, tensor2914);
14 gl0_free(tensor2914);

\\\\ii~i1®preevict( , 40960, SSD); "/////
16 ...

g10_free() Discard Dead Tensor

_
W

G10 will migrate tensors across GPU memory, host memory and Flash memory transparently




A Unified GPU Memory and Storage Architecture

|
R TR
Track Tensors Using the TR e / (__CPUMem l
Virtual Add [ cruadr | S I
Irtua ress | 7 -
BRE Accel Addr || [ ] K |
I 1 Frash Addr |~ \_AccelMem ) 2 |
: : . ; N 2 |
Integrating SSD into the UVM I i [1] [ FiashAdar \Qﬂ] L
| NN . ,
\
N e m e o —_ .’
~ - -
~ ~ - _ -
PCle S~ -7
GPU . Host ! CUDA
Switch GPU Driver Extended UVM _
e e | , Driver + | Runtime
E GPU Main Memory ‘ SSD \ CPU Main Memory | Kernel Space . User Space




Put It All Together

" DNN Model )
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G10 Instrumented Program
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Tensor Liveness Analysis
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Implementation Trace-driven simulator based on
P UVMSmart and GPGPU-SIim

Benchmarks BERT, ViT, ResNet, Inceptionv3, SENet
Baselines

® Ideal: GPU with infinite memory

® Base UVM: Basic GPU-CPU-SSD UVM system w/o smart

G10

Evaluation

migrations
* DeepUM+: UVM system with correlation-based prefetch
® FlashNeuron: Direct GPU-SSD communication w/ selective

tensor offloading




Performance Benefit of G10 for Training Large Models
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With limited GPU memory, G10 achieves 90.3% of the ideal performance




Performance Breakdown of G10
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G10 incurs the least stall time, as it achieves better I/O and computation overlapping




Smart Tensor Migration Mechanism
for DNN Workloads

G10
Summary

A Unified Memory and Storage Architecture
for Simplifying Memory Management

Achieves 90.3% of the Ideal
Performance
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