
1

G10: Enabling An Efficient Unified GPU Memory and

Storage Architecture with Smart Tensor Migrations

1

Haoyang Zhang*, Yirui Eric Zhou*, Yuqi Xue, Yiqi Liu, Jian Huang

Systems Platform Research Group

*Co-primary authors.

Large DNN Workloads Are Hungry for Memory

2 Systems Platform Research Group at UIUC

Photo credit: https://github.com/amirgholami/ai_and_memory_wall

2 Systems Platform Research Group at UIUC

Photo credit: https://github.com/amirgholami/ai_and_memory_wall

Tens of GBs

DNN Model Size

On-board Memory

Tens of TBs

---------------vs.----------------

Large DNN Workloads Are Hungry for Memory

Expanding GPU Memory with Flash Memory

3

Flash Memory

Tens of TBs

Low Cost

Systems Platform Research Group at UIUC

Tens of GBs

DNN Model Size

On-board Memory

Tens of TBs

---------------vs.----------------

+

Large Capacity

State-of-the-Art Solutions Are Not Efficient Enough

4

AMD SSG Academic Research

Flash Bandwidth is the Bottleneck!

GPUDirect Storage

Systems Platform Research Group at UIUC

GPU

HBM SSD

5

Overlap Data I/O and Computation

On-board Memory Flash Memory

+ Unlimited Memory≈

Goal: Expand GPU Memory While Achieving Near-Ideal Performance

Systems Platform Research Group at UIUC

Stall StallKernel 1 Kernel 2 Kernel 3

Data

Access 2

Data

Access 3

…

Host Memory/SSD→GPU Data Transfer

GPU Kernel Computation

…
Stalled by

slow data

transfer!

5

Overlap Data I/O and Computation

On-board Memory Flash Memory

+ Unlimited Memory≈

Systems Platform Research Group at UIUC

Achieve Near-Ideal Performance

with Slow Memory

Goal: Expand GPU Memory While Achieving Near-Ideal Performance

Kernel 1 Kernel 2 Kernel 3

Data

Access 2

Data

Access 3

…

Host Memory/SSD→GPU Data Transfer

GPU Kernel Computation

…

Observation 1: Active Tensors Require Only A Small Portion of GPU Memory

6 Systems Platform Research Group at UIUC

GPU Kernel Index (Program Progress)

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n

6

Most Tensors Are Inactive and Can Be Swapped Out During Training

Active Tensors

(less than 10%,

~1% on average)

Active + Inactive

Tensors

Systems Platform Research Group at UIUC

GPU Kernel Index (Program Progress) of BERT-128

M
e
m

o
ry

 C
o
n
s
u
m

p
ti
o
n

Observation 1: Active Tensors Require Only A Small Portion of GPU Memory

Observation 2: Many Tensors Are Unused for A Long Time

7

Distribution (CDF) of tensor inactive period lengths

Systems Platform Research Group at UIUC

7

Distribution (CDF) of tensor inactive period lengths for BERT-128

Systems Platform Research Group at UIUC

More than 50% of the inactive periods

last longer than 100 milliseconds.

Many Tensors Can Be Safely Swapped Out to Slow Memory

Observation 2: Many Tensors Are Unused for A Long Time

8

Extract the Semantic Knowledge

of Tensors in DNN Models

Tensor Liveness Analysis

Smart Tensor Placement and Migration

Schedule Tensor Migrations

using Semantic Knowledge

A Unified Memory and Storage Architecture

GPU

Memory
SSD

Host

Memory

Systems Platform Research Group at UIUC

Simplify the Heterogeneous

Memory Management for GPU

G10: Break the GPU Memory Wall with Smart Tensor Migrations

G10

2 Estimate the lifetime of each tensor

With offline compile-time profiling, we can:

1

Tensor Liveness Analysis with ML Compiler Support

9 Systems Platform Research Group at UIUC

Estimate the inactive periods of each tensor3

Estimate the active time of each tensor

9 Systems Platform Research Group at UIUC

Tensor Liveness Analysis with ML Compiler Support

Index

ID

Tensor

ID
Size

Start

Kernel ID

End

Kernel ID
Inactive Time

1 35 500MB 5 920 151 millisecs

2 36 2GB 2 924 153 millisecs

3 37 1GB 6 26 7 millisecs

…

Kernel

ID

Estimated

Exe. Time

1 1.0 millisecs

2 2.6 millisecs

3 0.01 millisecs

…

Inactive Tensor Table Kernel Time Table

Semantic Knowledge of A DNN Model

Enabling Smart Tensor Migrations with Rich Semantic Knowledge

10

Identify the Most Beneficial Inactive Tensor

Systems Platform Research Group at UIUC

A

B

C

Host Memory

SSD

GPU

GPU

Fetch

Evict

What

Decide Eviction Destination

Where

Decide the Best Time for Migrations

When

Instrument GPU Program with Migration Instructions

How

Program

</>

Migration A

Migration B

11 Systems Platform Research Group at UIUC

Each tensor migration will affect the subsequent decisions

Deciding the Most Beneficial Tensor is a Dynamic Optimization Problem

Decision Strategy: Choose tensors with the largest size and longest inactive time.

Evicting a tensor will affect GPU memory

pressure and I/O bandwidth utilization.

12 Systems Platform Research Group at UIUC

• Dynamic Algorithm: Keep track of

(1) inactive tensor periods,

(2) GPU memory pressure, and

(3) estimated I/O bandwidth utilization.

Utilizing Dynamic Algorithm to Decide Which Tensor to Evict

13 Systems Platform Research Group at UIUC

Utilizing Dynamic Algorithm to Decide Which Tensor to Evict

1
Estimate the impact for evicting each

inactive tensor

2
Choose the one which will reduce the

highest memory pressure () , and cause

the least I/O bandwidth pressure ()

3 Update the impact of this decision

A is better than B!
Evict Tensor Y in Period A!

Deciding the Eviction Destination Based on the Available SSD Bandwidth

14 Systems Platform Research Group at UIUC

GPU

SSDHost

1 Consider SSD first2
If SSD’s current traffic is

saturated, try host memory

3 If both SSD and Host are busy, go for SSD.

When Should We Migrate Tensors to Eliminate Data Access Stalls

15 Systems Platform Research Group at UIUC

Stalls May Happen Due to Performance Variations at Runtime

Tensor Inactive Period

Time“latest safe

prefetch time”
1

Start eviction once the

tensor becomes inactive 2 Calculate the time needed

to fetch the tensor

Eliminate Potential Stalls without Losing Eviction Benefits!

t =
Tensor Size

Available I/O

Bandwidth

Prefetching Too Early will Lose Eviction Benefits

16 Systems Platform Research Group at UIUC

1 Try to find an earlier time

2 Re-schedule prefetch time ->

Eliminate Potential Stalls with Smart Prefetching Algorithm

17 Systems Platform Research Group at UIUC

How to Implement Tensor Migrations

G10 Instrumented Program

Instruction Objective

g10_pre_evict() Evict Inactive Tensor

g10_prefetch() Prefetch Active Tensor

g10_alloc() Allocate Alive Tensor

g10_free() Discard Dead Tensor

New Instructions

G10 will migrate tensors across GPU memory, host memory and Flash memory transparently

19

Track Tensors Using the

Virtual Address

Systems Platform Research Group at UIUC

A Unified GPU Memory and Storage Architecture

Integrating SSD into the UVM

Put It All Together

20 Systems Platform Research Group at UIUC

25

G10

Evaluation

Implementation
Trace-driven simulator based on

UVMSmart and GPGPU-Sim

Benchmarks

Baselines

• Ideal: GPU with infinite memory

• Base UVM: Basic GPU-CPU-SSD UVM system w/o smart

migrations

• DeepUM+: UVM system with correlation-based prefetch

• FlashNeuron: Direct GPU-SSD communication w/ selective

tensor offloading

BERT, ViT, ResNet, Inceptionv3, SENet

0.0

0.2

0.4

0.6

0.8

1.0

BERT ViT Inceptionv3 ResNet152 SENet154

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

Base UVM FlashNeuron DeepUM+ G10 Ideal

O
O

M

O
O

M

Performance Benefit of G10 for Training Large Models

22 Systems Platform Research Group at UIUC

With limited GPU memory, G10 achieves 90.3% of the ideal performance

BERT ViT Inceptionv3 ResNet152 SENet154
0

20

40

60

80

100

E
x
e

c
u

ti
o

n
 T

im
e

 (
%

) Compute & Data Transfer Compute Stall
Base UVM

FlashNeuron DeepUM+
G10

O
O

M

O
O

M

Performance Breakdown of G10

23 Systems Platform Research Group at UIUC

G10 incurs the least stall time, as it achieves better I/O and computation overlapping

28

G10

Summary

Smart Tensor Migration Mechanism

for DNN Workloads

A Unified Memory and Storage Architecture

for Simplifying Memory Management

Achieves 90.3% of the Ideal

Performance

29

Thank You!

Haoyang Zhang

Yirui Eric Zhou, Yuqi Xue, Yiqi Liu, Jian Huang

Systems Platform Research Group

	full talk
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

